Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 693
Filtrar
1.
Nature ; 627(8005): 830-838, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448588

RESUMO

Airway integrity must be continuously maintained throughout life. Sensory neurons guard against airway obstruction and, on a moment-by-moment basis, enact vital reflexes to maintain respiratory function1,2. Decreased lung capacity is common and life-threatening across many respiratory diseases, and lung collapse can be acutely evoked by chest wall trauma, pneumothorax or airway compression. Here we characterize a neuronal reflex of the vagus nerve evoked by airway closure that leads to gasping. In vivo vagal ganglion imaging revealed dedicated sensory neurons that detect airway compression but not airway stretch. Vagal neurons expressing PVALB mediate airway closure responses and innervate clusters of lung epithelial cells called neuroepithelial bodies (NEBs). Stimulating NEBs or vagal PVALB neurons evoked gasping in the absence of airway threats, whereas ablating NEBs or vagal PVALB neurons eliminated gasping in response to airway closure. Single-cell RNA sequencing revealed that NEBs uniformly express the mechanoreceptor PIEZO2, and targeted knockout of Piezo2 in NEBs eliminated responses to airway closure. NEBs were dispensable for the Hering-Breuer inspiratory reflex, which indicated that discrete terminal structures detect airway closure and inflation. Similar to the involvement of Merkel cells in touch sensation3,4, NEBs are PIEZO2-expressing epithelial cells and, moreover, are crucial for an aspect of lung mechanosensation. These findings expand our understanding of neuronal diversity in the airways and reveal a dedicated vagal pathway that detects airway closure to help preserve respiratory function.


Assuntos
Pulmão , Reflexo , Respiração , Mecânica Respiratória , Nervo Vago , Animais , Feminino , Masculino , Camundongos , Células Epiteliais/metabolismo , Pulmão/citologia , Pulmão/inervação , Pulmão/fisiologia , Mecanorreceptores/metabolismo , Parvalbuminas/metabolismo , Reflexo/fisiologia , Células Receptoras Sensoriais/metabolismo , Nervo Vago/fisiologia , Complacência Pulmonar/fisiologia , Mecânica Respiratória/fisiologia
2.
Sci Adv ; 9(51): eadj3003, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134286

RESUMO

Effective therapies for obesity require invasive surgical and endoscopic interventions or high patient adherence, making it challenging for patients with obesity to effectively manage their disease. Gastric mechanoreceptors sense distension of the stomach and perform volume-dependent vagal signaling to initiate the gastric phase and influence satiety. In this study, we developed a new luminal stimulation modality to specifically activate these gastric stretch receptors to elicit a vagal afferent response commensurate with mechanical distension. We designed the Vibrating Ingestible BioElectronic Stimulator (VIBES) pill, an ingestible device that performs luminal vibratory stimulation to activate mechanoreceptors and stroke mucosal receptors, which induces serotonin release and yields a hormonal metabolic response commensurate with a fed state. We evaluated VIBES across 108 meals in swine which consistently led to diminished food intake (~40%, P < 0.0001) and minimized the weight gain rate (P < 0.05) as compared to untreated controls. Application of mechanoreceptor biology could transform our capacity to help patients suffering from nutritional disorders.


Assuntos
Obesidade , Estômago , Humanos , Animais , Suínos , Obesidade/terapia , Obesidade/metabolismo , Mecanorreceptores/metabolismo , Aumento de Peso , Nervo Vago/fisiologia
3.
Dev Cell ; 58(20): 2013-2014, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37875070

RESUMO

In this issue of Developmental Cell, Koutsioumpa et al. (2023) investigate the maturation of low-threshold mechanoreceptor nerve endings in both hairy and glabrous skin types and discover a critical role for target-derived BMP in the development of Meissner corpuscles in glabrous (i.e., hairless) skin.


Assuntos
Cabelo , Pele , Pele/inervação , Mecanorreceptores/metabolismo
4.
Dev Cell ; 58(20): 2032-2047.e6, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37607547

RESUMO

Mechanosensory neurons innervating the skin underlie our sense of touch. Fast-conducting, rapidly adapting mechanoreceptors innervating glabrous (non-hairy) skin form Meissner corpuscles, while in hairy skin, they associate with hair follicles, forming longitudinal lanceolate endings. How mechanoreceptors develop axonal endings appropriate for their skin targets is unknown. We report that mechanoreceptor morphologies across different skin regions are indistinguishable during early development but diverge post-natally, in parallel with skin maturation. Neurons terminating along the glabrous and hairy skin border exhibit hybrid morphologies, forming both Meissner corpuscles and lanceolate endings. Additionally, molecular profiles of neonatal glabrous and hairy skin-innervating neurons largely overlap. In mouse mutants with ectopic glabrous skin, mechanosensory neurons form end-organs appropriate for the altered skin type. Finally, BMP5 and BMP7 are enriched in glabrous skin, and signaling through type I bone morphogenetic protein (BMP) receptors in neurons is critical for Meissner corpuscle morphology. Thus, mechanoreceptor morphogenesis is flexibly instructed by target tissues.


Assuntos
Mecanorreceptores , Neurônios , Camundongos , Animais , Mecanorreceptores/metabolismo , Pele/inervação , Tato/fisiologia , Cabelo
5.
Cells Dev ; 174: 203837, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116316

RESUMO

Stem cell populations are defined by their capacity to self-renew and to generate differentiated progeny. These unique characteristics largely depend on the stem cell micro-environment, the so-called stem cell niche. Niches were identified for most adult stem cells studied so far, but we know surprisingly little about how somatic stem cells and their niche come together during organ formation. Using the neuromasts of teleost fish, we have previously reported that neural stem cells recruit their niche from neighboring epithelial cells, which go through a morphological and molecular transformation. Here, we tackle quantitative, temporal, and clonal aspects of niche formation in neuromasts by using 4D imaging in transgenic lines, and lineage analysis in mosaic fish. We show that niche recruitment happens in a defined temporal window during the formation of neuromasts in medaka, and after that, the niche is enlarged mainly by the proliferation of niche cells. Niche recruitment is a non-clonal process that feeds from diverse epithelial cells that do not display a preferential position along the circumference of the forming neuromast. Additionally, we cover niche formation and expansion in zebrafish to show that distant species show common features during organogenesis in the lateral line system. Overall, our findings shed light on the process of niche formation, fundamental for the maintenance of stem cells not only in medaka but also in many other multicellular organisms.


Assuntos
Células-Tronco Neurais , Oryzias , Animais , Peixe-Zebra/metabolismo , Nicho de Células-Tronco , Mecanorreceptores/metabolismo
6.
Knee ; 42: 28-36, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36863118

RESUMO

BACKGROUND: The aim of the present study is to describe the morphology and distribution of the nerve endings of the meniscotibial ligament (MTL) of the knee, in order to understand the interaction between the proprioceptive system and knee mechanics. METHODS: Twenty medial MTLs were obtained from deceased organ donors. The ligaments were measured, weighed and cut. Sections (10 mm) were prepared on hematoxylin and eosin-stained slides for analysis of tissue integrity, and 50 mm sections were submitted to immunofluorescence with the protein gene product (PGP) 9.5 as primary antibody and Alexa Fluor 488 as secondary antibody, followed by microscopic analysis. RESULTS: The medial MTL was identified in 100% of the dissections, with average length, width, thickness and weight of 7.07 ± 1.34 mm, 32.25 ± 3.09 mm, 3.53 ± 0.27 mm and 0.67 ± 0.13 g, respectively. The hematoxylin and eosin-stained histological sections exhibited typical ligament structure, with dense well-organized collagen fibers and vascular tissue. All the specimens analyzed contained type I (Ruffini) mechanoreceptors and free (type IV) nerve endings, varying from parallel to intertwined fibers. Nerve endings not classified with different irregular shapes were also found. Most type I mechanoreceptors were found close to the MTL insertions on the tibial plateau, while the free nerve endings were found adjacent to the capsule. CONCLUSION: The medial MTL showed a peripheral nerve structure, primarily type I and IV mechanoreceptors. These findings suggest that the medial MTL is important for proprioception and medial knee stabilization.


Assuntos
Mecanorreceptores , Terminações Nervosas , Humanos , Amarelo de Eosina-(YS)/metabolismo , Hematoxilina/metabolismo , Mecanorreceptores/metabolismo , Mecanorreceptores/patologia , Ligamentos Articulares
7.
J Gen Physiol ; 154(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36256908

RESUMO

The membrane protein TMEM150C has been proposed to form a mechanosensitive ion channel that is required for normal proprioceptor function. Here, we examined whether expression of TMEM150C in neuroblastoma cells lacking Piezo1 is associated with the appearance of mechanosensitive currents. Using three different modes of mechanical stimuli, indentation, membrane stretch, and substrate deflection, we could not evoke mechanosensitive currents in cells expressing TMEM150C. We next asked if TMEM150C is necessary for the normal mechanosensitivity of cutaneous sensory neurons. We used an available mouse model in which the Tmem150c locus was disrupted through the insertion of a LacZ cassette with a splice acceptor that should lead to transcript truncation. Analysis of these mice indicated that ablation of the Tmem150c gene was not complete in sensory neurons of the dorsal root ganglia (DRG). Using a CRISPR/Cas9 strategy, we made a second mouse model in which a large part of the Tmem150c gene was deleted and established that these Tmem150c-/- mice completely lack TMEM150C protein in the DRGs. We used an ex vivo skin nerve preparation to characterize the mechanosenstivity of mechanoreceptors and nociceptors in the glabrous skin of the Tmem150c-/- mice. We found no quantitative alterations in the physiological properties of any type of cutaneous sensory fiber in Tmem150c-/- mice. Since it has been claimed that TMEM150C is required for normal proprioceptor function, we made a quantitative analysis of locomotion in Tmem150c-/- mice. Here again, we found no indication that there was altered gait in Tmem150c-/- mice compared to wild-type controls. In summary, we conclude that existing mouse models that have been used to investigate TMEM150C function in vivo are problematic. Furthermore, we could find no evidence that TMEM150C forms a mechanosensitive channel or that it is necessary for the normal mechanosensitivity of cutaneous sensory neurons.


Assuntos
Gânglios Espinais , Mecanotransdução Celular , Camundongos , Animais , Mecanotransdução Celular/fisiologia , Gânglios Espinais/metabolismo , Mecanorreceptores/metabolismo , Células Receptoras Sensoriais/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo
8.
Front Endocrinol (Lausanne) ; 13: 995499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120469

RESUMO

During hypertension, vascular remodeling allows the blood vessel to withstand mechanical forces induced by high blood pressure (BP). This process is well characterized in the media and intima layers of the vessel but not in the perivascular adipose tissue (PVAT). In PVAT, there is evidence for fibrosis development during hypertension; however, PVAT remodeling is poorly understood. In non-PVAT depots, mechanical forces can affect adipogenesis and lipogenic stages in preadipocytes. In tissues exposed to high magnitudes of pressure like bone, the activation of the mechanosensor PIEZO1 induces differentiation of progenitor cells towards osteogenic lineages. PVAT's anatomical location continuously exposes it to forces generated by blood flow that could affect adipogenesis in normotensive and hypertensive states. In this study, we hypothesize that activation of PIEZO1 reduces adipogenesis in PVAT preadipocytes. The hypothesis was tested using pharmacological and mechanical activation of PIEZO1. Thoracic aorta PVAT (APVAT) was collected from 10-wk old male SD rats (n=15) to harvest preadipocytes that were differentiated to adipocytes in the presence of the PIEZO1 agonist Yoda1 (10 µM). Mechanical stretch was applied with the FlexCell System at 12% elongation, half-sine at 1 Hz simultaneously during the 4 d of adipogenesis (MS+, mechanical force applied; MS-, no mechanical force used). Yoda1 reduced adipogenesis by 33% compared with CON and, as expected, increased cytoplasmic Ca2+ flux. MS+ reduced adipogenesis efficiency compared with MS-. When Piezo1 expression was blocked with siRNA [siPiezo1; NC=non-coding siRNA], the anti-adipogenic effect of Yoda1 was reversed in siPiezo1 cells but not in NC; in contrast, siPiezo1 did not alter the inhibitory effect of MS+ on adipogenesis. These data demonstrate that PIEZO1 activation in PVAT reduces adipogenesis and lipogenesis and provides initial evidence for an adaptive response to excessive mechanical forces in PVAT during hypertension.


Assuntos
Adipogenia , Hipertensão , Tecido Adiposo/metabolismo , Animais , Cálcio/metabolismo , Masculino , Mecanorreceptores/metabolismo , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley
9.
Neuroreport ; 33(14): 617-622, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36062515

RESUMO

Somatosensory information is signaled by primary sensory neurons located in dorsal root ganglia (DRG) or trigeminal ganglia. Type C-low threshold mechanoreceptors (C-LTMRs) are proposed to sense light touch. The differentiation and maturation of C-LTMRs are regulated by multiple transcript factors, including Zfp521 and Runx1. However, the molecular mechanism of C-LTMR development still remains largely unclear. RNA sequencing (RNA-seq) was performed to detect transcriptional changes in Tlx3cko DRGs compared to controls. In situ hybridization and RNAscope were used to verify RNA-seq data. RNA-seq identified 203 up- and 372 downregulated genes in DRG by loss of Tlx3 function. KEGG and Gene ontology analysis indicated that the biological properties and molecular functions were closely associated with neural signal processing and transmitting somatosensory information. In addition, the expression of marker genes of C-LTMRs was significantly decreased in Tlx3 mutants. However, Tlx3cko mice exhibited normal response to static and dynamic touch. Furthermore, Tlx3 was required to regulate the expression of Zfp521 and Runx1. Tlx3, Runx1 and Zfp521 may form a hierarchical regulation pathway to control C-LTMR development.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Proteínas de Homeodomínio/metabolismo , Mecanorreceptores , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Gânglios Espinais/metabolismo , Mecanorreceptores/metabolismo , Camundongos
10.
Am J Physiol Cell Physiol ; 323(4): C959-C973, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35968892

RESUMO

Mechanosensitive cation channels and Ca2+ influx through these channels play an important role in the regulation of endothelial cell functions. Transient receptor potential canonical channel 6 (TRPC6) is a diacylglycerol-sensitive nonselective cation channel that forms receptor-operated Ca2+ channels in a variety of cell types. Piezo1 is a mechanosensitive cation channel activated by membrane stretch and shear stress in lung endothelial cells. In this study, we report that TRPC6 and Piezo1 channels both contribute to membrane stretch-mediated cation currents and Ca2+ influx or increase in cytosolic-free Ca2+ concentration ([Ca2+]cyt) in human pulmonary arterial endothelial cells (PAECs). The membrane stretch-mediated cation currents and increase in [Ca2+]cyt in human PAECs were significantly decreased by GsMTX4, a blocker of Piezo1 channels, and by BI-749327, a selective blocker of TRPC6 channels. Extracellular application of 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane permeable analog of diacylglycerol, rapidly induced whole cell cation currents and increased [Ca2+]cyt in human PAECs and human embryonic kidney (HEK)-cells transiently transfected with the human TRPC6 gene. Furthermore, membrane stretch with hypo-osmotic or hypotonic solution enhances the cation currents in TRPC6-transfected HEK cells. In HEK cells transfected with the Piezo1 gene, however, OAG had little effect on the cation currents, but membrane stretch significantly enhanced the cation currents. These data indicate that, while both TRPC6 and Piezo1 are involved in generating mechanosensitive cation currents and increases in [Ca2+]cyt in human PAECs undergoing mechanical stimulation, only TRPC6 (but not Piezo1) is sensitive to the second messenger diacylglycerol. Selective blockers of these channels may help develop novel therapies for mechanotransduction-associated pulmonary vascular remodeling in patients with pulmonary arterial hypertension.


Assuntos
Células Endoteliais , Canais Iônicos , Mecanorreceptores , Canal de Cátion TRPC6 , Cálcio/metabolismo , Cátions/metabolismo , Diglicerídeos/metabolismo , Diglicerídeos/farmacologia , Células Endoteliais/metabolismo , Humanos , Soluções Hipotônicas/metabolismo , Soluções Hipotônicas/farmacologia , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mecanorreceptores/metabolismo , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo
11.
Cell Mol Life Sci ; 79(6): 321, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622133

RESUMO

BACKGROUND: Skeletal muscles (SkM) are mechanosensitive, with mechanical unloading resulting in muscle-devastating conditions and altered metabolic properties. However, it remains unexplored whether these atrophic conditions affect SkM mechanosensors and molecular clocks, both crucial for their homeostasis and consequent physiological metabolism. METHODS: We induced SkM atrophy through 14 days of hindlimb suspension (HS) in 10 male C57BL/6J mice and 10 controls (CTR). SkM histology, gene expressions and protein levels of mechanosensors, molecular clocks and metabolism-related players were examined in the m. Gastrocnemius and m. Soleus. Furthermore, we genetically reduced the expression of mechanosensors integrin-linked kinase (Ilk1) and kindlin-2 (Fermt2) in myogenic C2C12 cells and analyzed the gene expression of mechanosensors, clock components and metabolism-controlling genes. RESULTS: Upon hindlimb suspension, gene expression levels of both core molecular clocks and mechanosensors were moderately upregulated in m. Gastrocnemius but strongly downregulated in m. Soleus. Upon unloading, metabolism- and protein biosynthesis-related genes were moderately upregulated in m. Gastrocnemius but downregulated in m. Soleus. Furthermore, we identified very strong correlations between mechanosensors, metabolism- and circadian clock-regulating genes. Finally, genetically induced downregulations of mechanosensors Ilk1 and Fermt2 caused a downregulated mechanosensor, molecular clock and metabolism-related gene expression in the C2C12 model. CONCLUSIONS: Collectively, these data shed new lights on mechanisms that control muscle loss. Mechanosensors are identified to crucially control these processes, specifically through commanding molecular clock components and metabolism.


Assuntos
Relógios Biológicos , Mecanorreceptores , Músculo Esquelético , Atrofia Muscular , Animais , Relógios Biológicos/genética , Relógios Biológicos/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica , Elevação dos Membros Posteriores , Masculino , Mecanorreceptores/metabolismo , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
12.
Ann Anat ; 243: 151955, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35588932

RESUMO

BACKGROUND: Small clear synaptic-like vesicles fill axon terminals of mechanoreceptors. Their functional significance is controversial and probably includes release of neurotransmitters from afferent axon terminals. Synaptophysin, a major protein of the synaptic vesicle membrane, is present in presynaptic endings of the central and peripheral nervous systems. It is also expressed in mechanosensory neurons which extend into skin forming sensory corpuscles. Nevertheless, synaptophysin occurrence in these structures has never been investigated. METHODS: Here we used immunohistochemistry to detect synaptophysin in adult human dorsal root ganglia, cutaneous Meissner and Pacinian corpuscles and Merkel cell-neurite complexes from foetal to elderly period. Moreover, we analyzed whether synaptophysin co-localizes with the mechano-gated protein PIEZO2. RESULTS: Synaptophysin immunoreactivity was observed in primary sensory neurons (36 ± 6%) covering the entire soma size ranges. Axons of Meissner's and Pacinian corpuscles were positive for synaptophysin from 36 and 12 weeks of estimated gestational age respectively, to 72 years old. Synaptophysin was also detected in Merkel cells (from 14 weeks of estimated gestational age to old age). Additionally in adult skin, synaptophysin and PIEZO2 co-localized in the axon of Meissner and Pacinian corpuscles, Merkel cells as well as in some axons of Merkel cell-neurite complexes. CONCLUSION: Present results demonstrate that a subpopulation of primary sensory neurons and their axon terminals forming cutaneous sensory corpuscles contain synaptophysin, a typical presynaptic vesicle protein. Although the functional relevance of these findings is unknown it might be related to neurotransmission mechanisms linked to mechanotransduction.


Assuntos
Mecanotransdução Celular , Corpúsculos de Pacini , Adulto , Idoso , Axônios/fisiologia , Biomarcadores/análise , Humanos , Mecanorreceptores/metabolismo , Corpúsculos de Pacini/química , Pele , Sinaptofisina/análise , Sinaptofisina/metabolismo
13.
Commun Biol ; 5(1): 40, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017678

RESUMO

T cells are critically important for host defense against infections. T cell activation is specific because signal initiation requires T cell receptor (TCR) recognition of foreign antigen peptides presented by major histocompatibility complexes (pMHC) on antigen presenting cells (APCs). Recent advances reveal that the TCR acts as a mechanoreceptor, but it remains unclear how pMHC/TCR engagement generates mechanical forces that are converted to intracellular signals. Here we propose a TCR Bending Mechanosignal (TBM) model, in which local bending of the T cell membrane on the nanometer scale allows sustained contact of relatively small pMHC/TCR complexes interspersed among large surface receptors and adhesion molecules on the opposing surfaces of T cells and APCs. Localized T cell membrane bending is suggested to increase accessibility of TCR signaling domains to phosphorylation, facilitate selective recognition of agonists that form catch bonds, and reduce noise signals associated with slip bonds.


Assuntos
Fenômenos Biomecânicos/fisiologia , Membrana Celular , Mecanorreceptores , Receptores de Antígenos de Linfócitos T , Transdução de Sinais/fisiologia , Células Apresentadoras de Antígenos/química , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/metabolismo , Humanos , Ativação Linfocitária/fisiologia , Mecanorreceptores/química , Mecanorreceptores/metabolismo , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/química , Linfócitos T/citologia , Linfócitos T/metabolismo
14.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100363

RESUMO

Two PIEZO mechanosensitive cation channels, PIEZO1 and PIEZO2, have been identified in mammals, where they are involved in numerous sensory processes. While structurally similar, PIEZO channels are expressed in distinct tissues and exhibit unique properties. How different PIEZOs transduce force, how their transduction mechanism varies, and how their unique properties match the functional needs of the tissues they are expressed in remain all-important unanswered questions. The nematode Caenorhabditis elegans has a single PIEZO ortholog (pezo-1) predicted to have 12 isoforms. These isoforms share many transmembrane domains but differ in those that distinguish PIEZO1 and PIEZO2 in mammals. We used transcriptional and translational reporters to show that putative promoter sequences immediately upstream of the start codon of long pezo-1 isoforms predominantly drive green fluorescent protein (GFP) expression in mesodermally derived tissues (such as muscle and glands). In contrast, sequences upstream of shorter pezo-1 isoforms resulted in GFP expression primarily in neurons. Putative promoters upstream of different isoforms drove GFP expression in different cells of the same organs of the digestive system. The observed unique pattern of complementary expression suggests that different isoforms could possess distinct functions within these organs. We used mutant analysis to show that pharyngeal muscles and glands require long pezo-1 isoforms to respond appropriately to the presence of food. The number of pezo-1 isoforms in C. elegans, their putative differential pattern of expression, and roles in experimentally tractable processes make this an attractive system to investigate the molecular basis for functional differences between members of the PIEZO family of mechanoreceptors.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ingestão de Alimentos , Canais Iônicos/metabolismo , Mecanorreceptores/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
15.
Nucleic Acids Res ; 50(5): 2401-2416, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34875684

RESUMO

The function and identity of a cell is shaped by transcription factors controlling transcriptional networks, and further shaped by RNA binding proteins controlling post-transcriptional networks. To overcome limitations inherent to analysis of sparse single-cell post-transcriptional data, we leverage the invariant Caenorhabditis elegans cell lineage, isolating thousands of identical neuron types from thousands of isogenic individuals. The resulting deep transcriptomes facilitate splicing network analysis due to increased sequencing depth and uniformity. We focus on mechanosensory touch-neuron splicing regulated by MEC-8/RBPMS. We identify a small MEC-8-regulated network, where MEC-8 establishes touch-neuron isoforms differing from default isoforms found in other cells. MEC-8 establishes the canonical long mec-2/Stomatin isoform in touch neurons, but surprisingly the non-canonical short isoform predominates in other neurons, including olfactory neurons, and mec-2 is required for olfaction. Forced endogenous isoform-specific expression reveals that the short isoform functions in olfaction but not mechanosensation. The long isoform is functional in both processes. Remarkably, restoring the long isoform completely rescues mec-8 mutant mechanosensation, indicating a single MEC-8 touch-neuron target is phenotypically relevant. Within the long isoform we identify a cassette exon further diversifying mec-2 into long/extra-long isoforms. Neither is sufficient for mechanosensation. Both are simultaneously required, likely functioning as heteromers to mediate mechanosensation.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Membrana/genética , Células Receptoras Sensoriais/metabolismo , Transcriptoma , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Mecanorreceptores/metabolismo , Splicing de RNA , Tato
16.
Cardiovasc Res ; 118(2): 440-460, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33576384

RESUMO

Atrial fibrillation (AF) is an important clinical problem. Chronic pressure/volume overload of the atria promotes AF, particularly via enhanced extracellular matrix (ECM) accumulation manifested as tissue fibrosis. Loading of cardiac cells causes cell stretch that is generally considered to promote fibrosis by directly activating fibroblasts, the key cell type responsible for ECM production. The primary purpose of this article is to review the evidence regarding direct effects of stretch on cardiac fibroblasts, specifically: (i) the similarities and differences among studies in observed effects of stretch on cardiac fibroblast function; (ii) the signalling pathways implicated; and (iii) the factors that affect stretch-related phenotypes. Our review summarizes the most important findings and limitations in this area and gives an overview of clinical data and animal models related to cardiac stretch, with particular emphasis on the atria. We suggest that the evidence regarding direct fibroblast activation by stretch is weak and inconsistent, in part because of variability among studies in key experimental conditions that govern the results. Further work is needed to clarify whether, in fact, stretch induces direct activation of cardiac fibroblasts and if so, to elucidate the determining factors to ensure reproducible results. If mechanical load on fibroblasts proves not to be clearly profibrotic by direct actions, other mechanisms like paracrine influences, the effects of systemic mediators and/or the direct consequences of myocardial injury or death, might account for the link between cardiac stretch and fibrosis. Clarity in this area is needed to improve our understanding of AF pathophysiology and assist in therapeutic development.


Assuntos
Fibrilação Atrial/metabolismo , Fibroblastos/metabolismo , Átrios do Coração/metabolismo , Frequência Cardíaca , Mecanorreceptores/metabolismo , Mecanotransdução Celular , Potenciais de Ação , Animais , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial , Fibroblastos/patologia , Fibrose , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Mecanorreceptores/patologia
17.
J Cell Biochem ; 123(1): 43-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34297413

RESUMO

Bag3 has been implicated in a wide variety of physiological processes from autophagy to aggresome formation and from cell transformation to survival. We argue that involvement of Bag3 in many of these processes is due to its distinct function in cell signaling. The structure of Bag3 suggests that it can serve as a scaffold that links molecular chaperones Hsp70 and small Hsps with components of a variety of signaling pathways. Major protein-protein interaction motifs of Bag3 that recruit components of signaling pathways are WW domain and PXXP motif that interacts with SH3-domain proteins. Furthermore, Hsp70-Bag3 appears to be a sensor of abnormal polypeptides during the proteotoxic stress. It also serves as a sensor of a mechanical force during mechanotransduction. Common feature of these and probably certain other sensory mechanisms is that they represent responses to specific kinds of abnormal proteins, i.e. unfolded filamin A in case of mechanotransduction or stalled translating polypeptides in case of sensing proteasome inhibition. Overall Hsp70-Bag3 module represents a novel signaling node that responds to multiple stimuli and controls multiple physiological processes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Mecanotransdução Celular , Neoplasias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Proteínas Reguladoras de Apoptose/química , Autofagia , Filaminas/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Mecanorreceptores/metabolismo , Domínios e Motivos de Interação entre Proteínas , Desdobramento de Proteína , Resposta a Proteínas não Dobradas
18.
Elife ; 102021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34939935

RESUMO

Although specialized mechanosensory cells are found across animal phylogeny, early evolutionary histories of mechanoreceptor development remain enigmatic. Cnidaria (e.g. sea anemones and jellyfishes) is the sister group to well-studied Bilateria (e.g. flies and vertebrates), and has two mechanosensory cell types - a lineage-specific sensory effector known as the cnidocyte, and a classical mechanosensory neuron referred to as the hair cell. While developmental genetics of cnidocytes is increasingly understood, genes essential for cnidarian hair cell development are unknown. Here, we show that the class IV POU homeodomain transcription factor (POU-IV) - an indispensable regulator of mechanosensory cell differentiation in Bilateria and cnidocyte differentiation in Cnidaria - controls hair cell development in the sea anemone cnidarian Nematostella vectensis. N. vectensis POU-IV is postmitotically expressed in tentacular hair cells, and is necessary for development of the apical mechanosensory apparatus, but not of neurites, in hair cells. Moreover, it binds to deeply conserved DNA recognition elements, and turns on a unique set of effector genes - including the transmembrane receptor-encoding gene polycystin 1 - specifically in hair cells. Our results suggest that POU-IV directs differentiation of cnidarian hair cells and cnidocytes via distinct gene regulatory mechanisms, and support an evolutionarily ancient role for POU-IV in defining the mature state of mechanosensory neurons.


Assuntos
Diferenciação Celular/genética , Mecanorreceptores/metabolismo , Fatores do Domínio POU/genética , Anêmonas-do-Mar/crescimento & desenvolvimento , Animais , Evolução Biológica , Fatores do Domínio POU/metabolismo , Anêmonas-do-Mar/genética
19.
Dis Model Mech ; 14(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34704598

RESUMO

The 2021 Nobel Prize in Physiology or Medicine was awarded to Ardem Patapoutian and David Julius for their research on receptor channels responsible for the perception of touch and temperature. Somatosensation, an overarching sense that enables us to safely interface with the physical forces around and within us, is the fourth sensory modality to be recognized by the Nobel Committee. The story of the discovery of TRP and PIEZO channels, and subsequent investigations into their myriad roles in the perception of noxious and mild temperature, touch, pain, pressure and body position, is an archetype for how translational research into human and animal health is built on a foundation of excellence in basic science.


Assuntos
Medicina , Prêmio Nobel , Fisiologia , Tato/fisiologia , Animais , Mecanorreceptores/metabolismo , Camundongos Knockout , Temperatura
20.
Stem Cell Res ; 56: 102535, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34607262

RESUMO

Somatosensory low threshold mechanoreceptors (LTMRs) sense innocuous mechanical forces, largely through specialized axon termini termed sensory nerve endings, where the mechanotransduction process initiates upon activation of mechanotransducers. In humans, a subset of sensory nerve endings is enlarged, forming bulb-like expansions, termed bulbous nerve endings. There is no in vitro human model to study these neuronal endings. Piezo2 is the main mechanotransducer found in LTMRs. Recent evidence shows that Piezo1, the other mechanotransducer considered absent in dorsal root ganglia (DRG), is expressed at low level in somatosensory neurons. We established a differentiation protocol to generate, from iPSC-derived neuronal precursor cells, human LTMR recapitulating bulbous sensory nerve endings and heterogeneous expression of Piezo1 and Piezo2. The derived neurons express LTMR-specific genes, convert mechanical stimuli into electrical signals and have specialized axon termini that morphologically resemble bulbous nerve endings. Piezo2 is concentrated within these enlarged axon termini. Some derived neurons express low level Piezo1, and a subset co-express both channels. Thus, we generated a unique, iPSCs-derived human model that can be used to investigate the physiology of bulbous sensory nerve endings, and the role of Piezo1 and 2 during mechanosensation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mecanorreceptores/metabolismo , Mecanotransdução Celular , Terminações Nervosas/metabolismo , Células Receptoras Sensoriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...